Федотов Валерий Павлович (matholimp) wrote,
Федотов Валерий Павлович
matholimp

Category:

Задачи для 6 класса 12-ой олимпиады "Третье тысячелетие"

1. На турнир приехали несколько команд с флагами своих провинций. Оказалось, что все флаги разные, каждый состоит из трёх горизонтальных полос одинаковой длины и ширины. Каждая полоса закрашена в жёлтый, зелёный, красный или синий цвета, причём соседние полосы обязательно разные по цвету. Какое наибольшее число команд с такими флагами могло приехать на турнир?
2. Ритуал начинается с того, что шаман кладёт 1 камень в первое блюдце, 2 во второе и 3 в третье. Затем он тратит минуту на размышление, после чего перекладывает какой-то камень из одного блюдца в другое, но так, чтобы в разных блюдцах было разное число камней. Затем он тратит на размышление следующую минуту и снова перекладывает какой-то камень и т.д. Все камни и блюдца отличаются друг от друга. Начиная со второго перекладывания, запрещается возвращаться к уже пройденным раскладам камней. Как долго может продолжаться этот шаманский ритуал?
3. Алекс хочет измерить длину диагонали кирпича. Из измерительных инструментов у него есть только линейка, но зато он может взять несколько одинаковых кирпичей. Как можно это сделать и какое наименьшее число кирпичей ему придётся использовать?
4. Найдите наименьшее натуральное число, среди делителей которого есть 4 подряд идущих двузначных числа.
5. Директор школы решил сравнить итоги выступления своих учеников на олимпиаде с соседями. Сначала он сосчитал, сколько процентов от числа участников олимпиады 5 класса стали дипломантами. Оказалось, что этот показатель в его школе на 20% выше, чем в соседней. Точно такая же разница в 20% получилась и при сравнении таких же показателей по 6, 7 и 8 классам. Однако когда директор сравнил такие же показатели сразу по всем участникам из 5-8 классов, то перевес в те же 20% оказался на стороне соседей. Как такое могло случиться?
6. Расставьте в клетках квадрата 6х6 различные натуральные числа так, чтобы сумма в каждой строке и в каждом столбце была равна 2012.
Tags: олимпиада
Subscribe

promo matholimp march 8, 11:38 5
Buy for 10 tokens
Буквально вчера я посетовал, что этого текста давно уже не осталось на просторах интернета. Но сразу же подумал, что он мог бы сохраниться на моём диске со старыми архивами. И не ошибся! «Рваная грелка» 2005 года, группа К, фэнтэзи 076. А сегодня идеальная дата, чтобы выложить его сюда. В качестве…
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 0 comments