Федотов Валерий Павлович (matholimp) wrote,
Федотов Валерий Павлович
matholimp

Category:

Задачи для 7 класса 12-ой олимпиады "Третье тысячелетие"

1. На турнир приехали несколько команд с флагами своих провинций. Оказалось, что все флаги разные, каждый состоит из трёх горизонтальных полос одинаковой длины и ширины. Каждая полоса закрашена в жёлтый, зелёный, красный, синий или чёрный цвета, причём соседние полосы обязательно разные по цвету. Какое наибольшее число команд с такими флагами могло приехать на турнир?
2. Подберите подходящие 7 подряд идущих натуральных чисел и поставьте перед каждым из них знак + или − так, чтобы алгебраическая сумма оказалась равна 2012.
3. Алекс хочет измерить длину диагонали кирпича. Из измерительных инструментов у него есть только линейка, но зато он может взять несколько одинаковых кирпичей. Как можно это сделать и какое наименьшее число кирпичей ему придётся использовать?
4. Пусть S(n) − суммa цифр числa n. Найдите наименьшее натуральное число n, которое делится на 2012−S(n).
5. Директор школы решил сравнить итоги выступления своих учеников на олимпиаде с соседями. Сначала он сосчитал, сколько процентов от числа участников олимпиады 5 класса стали дипломантами. Оказалось, что этот показатель в его школе на 20% выше, чем в соседней. Точно такая же разница в 20% получилась и при сравнении таких же показателей по 6, 7 и 8 классам. Однако когда директор сравнил такие же показатели сразу по всем участникам из 5-8 классов, то перевес в те же 20% оказался на стороне соседей. Как такое могло случиться?
6. Расставьте в клетках квадрата 7х7 различные натуральные числа так, чтобы сумма в каждой строке и в каждом столбце была равна 2012.
Tags: олимпиада
Subscribe
  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 4 comments